Participating Faculty

Neuroscience currently has 40 affiliated faculty members from 11 participating university departments and 5 colleges.

 

Name Department Research Interests
Vellareddy Anantharam BMS

Cellular and molecular mechanisms of neurodegeneration and application of such information to the development of novel strategies for treating Parkinson's. Role of oxidative stress and ER stress in etiopathogenesis of Parkinson's and Prion.

Gil Ben-Shlomo VCS

Ophthalmology

Vlastislav Bracha BMS

Structure and function of the neural networks that are responsible for simple forms of associative learning.

Steve Carlson BMS

Investigations of the molecular pharmacologic aspects of the relationships between receptors, antibiotics, antibiotic resistance, and the virulence of bacterial enteropathogens such as Salmonella.

Jason Chan Psychology

Memory distortions and eyewitness suggestibility; the effects of aging on memory performance; applying cognition to education; prospective memory.

Baoyu (Stone) Chen BBMB We study the fundamental mechanisms by which neuronal receptors control the actin cytoskeleton to drive diverse neuronal activities, including neuronal morphogenesis, structural plasticity, and cell-cell communication.
Peter Clark FSHN

My research theme encompasses the impact of physical activity status and diet on neural plasticity, mood, and cognitive performance.  This includes 1) uncovering mechanisms behind how the brain metabolically adapts to exercise or dietary supplementation and how these changes promote cognitive function or confer protection against the damaging consequences of stress.  2) Exploring the ways in which exercise-enhanced adult hippocampal neurogenesis buffer stress and improve memory.  3) Identifying neural changes resulting from exposure to stress that affect willingness to engage in physical activity and diet choice.

Eric Cooper Psychology

Research focusses on how humans represent objects, faces, and scenes in memory for the purpose of recognizing them. Research is directed towards understanding the hemispheric specialization that underlies visual recognition processes.

Tim Day BMS

Research is focused on the molecular and functional biology of the nervous systems of parasitic worms. We aim to understand the basic biology of these worms with the additional goal of identifying novel drug targets for control of parasitism. The worms that we study range from the human flatworm parasite Schistosoma mansoni (the agent of human schistomiasis in Africa, Asia and South America) all the way to the nematode parasite of soybeans, Heterodera glycines.

N. Matthew Ellinwood Animal Science

Companion animal models of human genetic disease, pathogenesis and therapy for neuropathic lysosomal storage diseases, brain targeted gene therapy, enzyme replacement therapy, pharmacoperone therapy, novel enzyme constructs.

Jeff Essner GDCB

Genomics approach using zebrafish to model migration of and formation of blood supply for cancer cells and identify genes that are required at specific steps in cancer progression.

Heather Greenlee BMS

The effect of the Alzheimer's protein, beta-amyloid on neural stem cell differentiation. The developmental proteome of retinal progenetor cells. The importance of vesicle trafficking protein, SNAP-25 for photoreceptor differentiation and development.

Justin GreenleeBMSResearch description coming soon....
Walter Hsu BMS

Cellular physiology and pharmacology of insulin secretion; cross-talk between heterotrimeric G-proteins.

Anumantha Kanthasamy BMS

Parkinson's disease: cellular/molecular mechanisms in dopaminergic degeneration, environmental risk factors, and neuroprotective strategies. Cardiac arrest-induced neurological deficits: posthypoxic myoclonus, seizures, animals models, novel drug discovery.

Arthi Kanthasamy BMS

Identify and characterize the cellular and molecular mechanisms underlying cerebral ischemia and Parkinson's disease (PD) associated pathogenesis. Investigation of the role of kinase dependent cell signaling pathways in neuronal degeneration. Developing gene therapy technologies aimed at limiting ischemia-induced brain damage. Evaluation of the role of autophagic protein degradation machinery in experimental models of PD and ischemia. Molecular mechanisms of prion pathogenesis.

Jonathan KellyPsych

Spatial cognition, including space perception, spatial memory, and navigation; Virtual reality; Neural basis of spatial cognition. 

Michael Kimber BMS

Neuromuscular biology of parasitic worms, and in particular the role played by neuropeptide transmitters, in an effort to identify novel targets for antiparasitic drugs.

Marian Kohut Kinesiology

Research description coming soon!

Julie Kuhlman GDCB

We are interested in studying the signals that direct the formation and function of the peripheral nervous system, particularly the enteric nervous system, during early development.

Surya Mallapragada Chemical Engineering

Our research program is focused on designing polymers and biomaterials with tailored micro/nanostructures to precisely control function and properties at the molecular and cellular levels. Our two broad focus areas are: 1) smart polymers and 2) neural tissue engineering.

Richard Martin BMS

Our research activity stems from an interest in ion-channel receptors and their responses to drugs. We have developed C. elegans and Ascaris suum preparations for recording at the single-channel level and examining the mode of action of drugs on their ion-channels. Our research interests extends to the mode of action of antiparasitic drugs and resistance to them and covers developing areas of molecular pharmacology.

Mike McCloskey GDCB

Our research deals with membrane physiology and signal transduction in mast cells and more recently, neural progenitors. Allergic reactions are initiated when mast cells detect allergens via their FcεRI receptor for Immunoglobulin E (IgE). Allergic rhinitis and other forms of hypersensitivity also can be classically conditioned to occur in response to IgE-independent stimuli such as odors.

Maura McGrail GDCB

Molecular basis of animal development and the mechanisms underlying cancer in humans.  We use the zebrafish, Danio rerio, a model system for studying the molecular genetics of vertebrate development and human disease.

Suzanne Millman VDPAM Research description coming soon!
Marit Nilsen-Hamilton BBMB

Regulation of gene expression by growth factors in animal cells; tissue-specific regulation of gene expression; imaging gene expression; interaction between mother and fetus during reproduction.

Alan Robertson BMS

Nematode ion channels as anti-parasitic drug targets. Electrophysiology of ligand- and voltage-gated ion channels in nematode parasites and C. elegans. Identifying anti-nematodal modes of action and mechanisms of resistance to anthelmintics. Modulation of ionotropic acetylcholine receptors at the nematode neuromuscular junction. Characterization of novel ion channels and validation as potential drug targets.

Jason Ross Animal Science

Identification and the study of the effects miRNAs have on transcriptome and proteome during oocyte maturation, early embryonic development and implantation in the pig. These mechanisms are studied in vivo, in vitro and SCNT derived embryos.

Eric Rowe BMS

Glial/neuron interactions in both the healthy brain and in neurodegenerative disorders.

Wilson Rumbeiha VDPAM

Dr. Rumbeiha’s neuroscience  research is focused on understanding the role of the environment is neurotoxicology and neurodegenerative diseases. Current projects involve understanding the neurotoxicology of sulfide gases, among other environmental toxicants.

Don Sakaguchi GDCB

Developmental neurobiology, stem cell biology, stem cell transplants as a strategy for CNS rescue and repair, development and plasticity of vertebrate visual systems.

Josh Selsby Animal Science

Muscle physiology with a particular emphasis on mechanisms of pathology in Duchenne muscular dystrophy and disuse atrophy as well as the development of interventions for these conditions.

Jeanne Serb EEOB

I am interested in the genetic and developmental mechanisms that drive diversification and evolution. My research program focuses on three levels of evolutionary change: organismal, genomic, and developmental. Currently, my lab investigates the role of gene duplication in the origin of evolutionary novelty in invertebrate eyes, the evolution and development of scallop eyes, and molecular phylogeny and conservation of endangered freshwater mussel species, including the winged mapleleaf, Quadrula fragosa and the western fanshell, Cyprogenia aberti.

Ravindra Singh BMS

Interest of his group has been to understand the mechanism of alternative splicing, a vital process that increases the coding potential of genome in all higher eukaryotes. Alternative splicing is also associated with a growing number of diseases including neurological and neuromuscular disorders, cardiovascular disorders and cancer.

Ann Smiley-Oyen Kinesiology

How the basal ganglia and cerebellum contribute to motor control and motor learning. Parkinson's disease and cerebellar dysfunction studied, and developmental dyslexia and developmental coordination disorder. Long-range goal: to impact therapeutic practice.

Elizabeth Stegemoller Kinesiology

Our research aims to understand how music influences movement and associated cortical activity in healthy adults and persons with Parkinson's disease, and to examine rehabilitation strategies that use music to improve movement performance in persons with Parkinson's disease.  

Thimmasettapp Thippeswamy BMS

Overall research theme is disease modification in epilepsy. The primary focus is to investigate the mechanism of epileptogenesis in view of identifying new therapeutic targets and diagnostic biomarkers. The hypothesis is that neuroprotectants revert neuron-glial miscommunication that occurs after a first seizure. To test this hypothesis, a variety of techniques such as real-time remote video-telemetric EEG, neurological behavioral tests, proteomics, neurobiological (immunohistochemistry and histology) and biochemical analyses are employed.

Jeff Trimarchi GDCB

Our research aims to understand the gene expression programs responsible for generating neuronal diversity in the developing retina. Single cell gene profiling experiments will be used to develop molecular taxonomies of the different classes of retinal neurons, specifically focusing on the retinal ganglion cells. In addition, the gene networks that produce these different ganglion cells will be identified.

Eric Underbakke BBMB

Architecture and assembly of scaffolded signaling complexes in the post-synaptic density. Our lab employs mass spectrometry and chemical tools to probe the interactions and post-translational modifications that contribute to synaptic signaling strength and plasticity.

Willette, Auriel
 

FSHN

The impact of obesity and metabolic dysfunction on structural and functional neuroimaging outcomes using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). Our integrative neuroscience laboratory pairs neuroimaging data with cognitive performance and affect/emotion, body composition imaging, and physiological biomarkers (ELISA, RIA, proteomics). This research is also directed toward understanding the biological and neural underpinnings of neurological disorders, particularly Alzheimer’s disease.